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The elliptic instability of a Batchelor vortex subject to a stationary strain field is
considered by theoretical and numerical means in the regime of large Reynolds
number and small axial flow. In the theory, the elliptic instability is described as a
resonant coupling of two quasi-neutral normal modes (Kelvin modes) of the Batchelor
vortex of azimuthal wavenumbers m and m + 2 with the underlying strain field. The
growth rate associated with these resonances is computed for different values of the
azimuthal wavenumbers as the axial flow parameter is varied. We demonstrate that
the resonant Kelvin modes m =1 and m = −1 which are the most unstable in the
absence of axial flow become damped as the axial flow is increased. This is shown to
be due to the appearance of a critical layer which damps one of the resonant Kelvin
modes. However, the elliptic instability does not disappear. Other combinations of
Kelvin modes m = −2 and m =0, then m = −3 and m = −1 are shown to become
progressively unstable for increasing axial flow. A complete instability diagram is
obtained as a function of the axial flow parameter for several values of the strain rate
and Reynolds number.

The numerical study considers a system of two counter-rotating Batchelor vortices in
which the strain field felt by each vortex is due to the other vortex. The characteristics
of the most unstable linear modes developing on the frozen base flow are computed
by direct numerical simulations for two axial flow parameters and compared to the
theory. In both cases, a very good agreement is obtained for the most unstable modes.
Less unstable modes are also identified in the numerics and shown to correspond to
peculiar resonances involving Kelvin modes from branches of different labels.

1. Introduction
A vortex which is elliptically deformed by an external strain field is generically

subjected to the so-called elliptic instability. This instability has been extensively
studied in vortices without axial flow. The purpose of this work is to analyse the effect
of an axial flow on its occurrence and determine the elliptic stability characteristics
of a classical model of a vortex with an axial jet.

The elliptic instability is now recognized as an important phenomenon of vortex
dynamics. It is believed to take place in various contexts ranging from three-
dimensional transition in shear flows (Bayly, Orszag & Herbert 1988) to vortex
interactions (Leweke & Williamson 1998) and flows in elliptic containers (Eloy,
Le Gal & Le Dizès 2003). We refer to the review by Kerswell (2002) for details and
other references. The generic aspects of the elliptic instability were first identified by
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Pierrehumbert (1986) and Bayly (1986) who considered the local stability properties
of an elliptic flow. Before these local analyses, Moore & Saffman (1975) and Tsai &
Widnall (1976) had identified an instability which develops in strained vortices. They
performed the first global stability analysis of the elliptic instability and provided an
instability mechanism in terms of normal mode resonance. Moore & Saffman (1975)
showed, for an arbitrary strained vortex without axial flow, that two neutral normal
modes (Kelvin waves) of the underlying axisymmetric vortex are coupled by the strain
field if their characteristics satisfy a condition of resonance. They also provided, by an
asymptotic analysis in the limit of small strain field, a formal expression for the com-
plex growth rate of the resonant modes. This theory has been applied to various vor-
tices without axial flow (Tsai & Widnall 1976; Eloy & Le Dizès 1999, 2001; Fabre &
Jacquin 2004a).

The effect of axial flow has been considered in Lacaze, Birbaud & Le Dizès (2005)
for the Rankine vortex with a constant axial flow in its core. They showed that axial
flow modifies the characteristics of the most unstable resonant modes. However, the
Rankine vortex is a crude approximation for a realistic vortex. In particular, we now
know that some of its normal modes disappear when the vortex profile is changed
into a smoothly varying profile (Sipp & Jacquin 2003; Fabre, Sipp & Jacquin 2006).
The vortex we consider here is a classical model of a vortex with an axial flow. It is
known to model correctly the structure of trailing vortices in the far-wake of aircraft
(Batchelor 1964).

In the aeronautical context, the elliptic instability is expected to intervene in the
dynamics of the multiple vortices generated by aircraft wings. Each vortex is in the
strain field of surrounding vortices, and therefore subjected to an elliptic instability.
In configurations without an axial flow, the elliptic instability has been observed
experimentally in both counter-rotating vortices (Leweke & Williamson 1998) and in
co-rotating vortices (Meunier & Leweke 2005). It has been modelled using Moore
& Saffman’s approach in Le Dizès & Laporte (2002). They demonstrated that this
approach based on a single strained vortex provides very good estimates for the elliptic
instability characteristics in vortex pairs. In the present work, a similar comparison
will be performed: the theory constructed for a single strained vortex will be validated
by numerical results obtained for a pair of counter-rotating Batchelor vortices.

The Batchelor vortex has been the subject of numerous works. It is known to
be unstable with respect to inviscid perturbations when the axial flow exceeds a
critical value (see for instance Ash & Khorrami 1995). Here, the axial flow will be
varied below this critical value. The strong inviscid instability will not be active,
allowing the development of the weaker elliptic instability. Fabre & Jacquin (2004b)
have discovered that Batchelor vortices also exhibit unstable modes for small axial
flow if the Reynolds number is sufficiently large. These modes are purely viscous
and localized in the vortex centre. Their growth rate is O(Re−1/3). They will not be
considered in the present work. We shall consider the resonant coupling of inviscid
normal modes only. For small axial flow velocities, these normal modes are expected
to be either neutral or damped by a critical layer singularity. The appearance of
critical layers is a common feature of normal modes in vortices with continuous
vorticity profiles, but very little information is available in the literature. Sipp &
Jacquin (2003) studied these singular modes for the Lamb–Oseen vortex. Le Dizès &
Lacaze (2005) provided partial information on these modes for the Batchelor vortex
using an asymptotic approach. An important part of the present work will be the
determination of these modes for the Batchelor vortex as the axial flow velocity is
varied.
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The paper is organized as follows. In § 2, the base flow and characteristic features
of the Batchelor Kelvin modes are described. In § 3, the theoretical results for the
elliptic instability are presented. The inviscid characteristics of the first principal
modes associated with resonance of Kelvin modes with the same branch labels are
first given. The damping rate due to the critical layer is in particular calculated.
The perturbation method leading to the elliptic complex growth rate formula is then
briefly described in § 3.2. The variation of each term in that formula for the different
principal modes is analysed. Growth rate contour plots in the axial flow parameter –
axial wavenumber plane are computed for several Reynolds numbers and strain
rates. Instability diagrams showing the most unstable principal mode as functions
of the Reynolds number and axial flow are also provided. The theory is compared
to numerics in § 4 where the instability characteristics of counter-rotating Batchelor
vortices are computed. The numerical procedure and information on the code are
first provided in § 4.1 and § 4.2, respectively. In § 4.3, instability growth rates are
computed versus the axial wavenumber for two different values of the axial flow.
The characteristics of the theoretical principal modes are shown to be recovered with
very good agreement. Other instability modes are also obtained and shown to be
associated with non-principal modes (i.e. with resonant Kelvin modes of different
branch labels). A brief conclusion is provided in the last section.

2. Problem formulation
2.1. Description of the base flow field

The Batchelor vortex is a self-similar solution of the Navier–Stokes equations. Its
axial vorticity ω0 and axial velocity W0 can be written in cylindrical coordinates as

ω0 =
Γ

πR2
exp(−(r/R)2), (2.1)

W0 =
ξR2

0

R2
exp(−(r/R)2), (2.2)

where the radius R(t) evolves in time by viscous diffusion according to

R(t) =

√
4νt + R2

0 . (2.3)

The circulation Γ and axial velocity ξ are constants which measure the strengths of
the rotation and of the jet, respectively.

In the following, the viscous diffusion of the radius R(t) will be neglected and we
will assume R(t) = R0. This hypothesis is common in aeronautical applications where
the Reynolds number often exceeds 106. In the numerical computation in § 4, the base
flow is artificially frozen.

Variables are non-dimensionalized by the radius R0 and the angular velocity in the
vortex centre Ω0 = Γ/(2πR2

0) such that the above expressions become:

ω0 = 2 exp(−r2), (2.4)

W0 = W0 exp(−r2). (2.5)

The flow is characterized by the Reynolds number Re = Γ/(2πν) and the axial velocity
strength W0 = 2πR0ξ/Γ . The parameter W0 is related to the Swirl number S, defined
as the ratio of the maximum azimuthal velocity to the maximum axial velocity via
the relation W0 = 0.638/S (Lessen, Singh & Paillet 1974).
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Here, we shall assume that W0 < 0.6 such that the vortex can be considered as
stable in a inviscid framework (see Ash & Khorrami 1995). Unstable inviscid centre
modes have recently been obtained for W0 < 0.6, but their growth rate is so small that
they should not intervene in the present study (Heaton 2007).

When a vortex is subjected to an external stationary strain field generated either by
another vortex or by boundaries, its streamlines are deformed elliptically at leading
order. The way an equilibrium solution is obtained when the strain field is small
has been analysed in Jiménez, Moffatt & Vasco (1996) and Le Dizès (2000a) for a
single strained vortex without axial flow, and in Sipp, Jacquin & Cossu (2000) for a
system of two counter-rotating vortices without axial flow. The presence of an axial
flow does not modify the two-dimensional equilibrium solution because the dynamics
of the axial velocity is decoupled from the other components of the velocity. If we
assume that the dimensionless external strain rate ε is small, a first-order solution for
the axial vorticity and for the axial velocity can be obtained as

ωz = ω0 − ε
f (r)ω′

0

2Ω0r
cos (2θ) + O(ε2), (2.6)

Uz = W0 − ε
f (r)W ′

0

2Ω0r
cos (2θ) + O(ε2). (2.7)

where Ω0 = (1 − exp(−r2)/r2) is the angular velocity of the Batchelor vortex, ω0 and
W0 have been defined in (2.4) and (2.5), respectively, and f (r) satisfies

d2f (r)

dr2
+

1

r

df (r)

dr
−

(
4

r2
+

3Ω ′
0

rΩ0

+
Ω ′′

0

Ω0

)
f (r) = 0. (2.8)

In (2.6)–(2.8), the prime denotes a derivative with respect to the radial coordinate r .
The function f (r) characterizes the interaction of the strain field with the vortex. For
large r , it satisfies f (r) ∼ r2 such that it matches the external strain field. Equation (2.8)
was also given by Jiménez et al. (1996) and Eloy & Le Dizès (1999) in the case
without axial flow. In the configuration of a Rankine vortex with an axial jet, an
explicit expression for the function f can be derived, as shown in Lacaze et al. (2005).

As mentioned in § 1, the elliptic instability can be interpreted as a process of
resonance between linear modes of the underlying vortex (here the Batchelor vortex)
with the correction induced by the strain field. In the next section, some of the
properties of the inviscid normal modes of the Batchelor vortex are described. The
conditions of resonance are considered in § 3.1.

2.2. Inviscid linear modes of the Batchelor vortex

The velocity field u′ and pressure field p′ of linear normal mode perturbations are
written in the form

(u′, p′) = (uK (r), pK (r)) exp(ikz + imθ − iωt), (2.9)

where ω is the temporal frequency and k and m are the axial and azimuthal
wavenumbers, respectively. This expression inserted in the linearized Euler equations
leads to a second-order differential equation for the pressure amplitude pK (see
Le Dizès 2004). The dispersion relation of the linear modes is obtained by enforcing
on pK adequate boundary conditions at the origin and at infinity.

For the Rankine vortex without axial flow, the dispersion relation has been known
for a long time (see for instance Saffman 1992). In such a case, the linear modes
are the so-called Kelvin modes first described by Kelvin (1880). For such a vortex,
the Kelvin modes form a basis for perturbations confined within the vortex core
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Figure 1. Dispersion relation for a Lamb–Oseen vortex (W0 = 0). (a) Frequencies as a function
of the axial wavenumber. Dotted lines delimit the frequency interval of the critical-layer modes.
(b) Inviscid damping rate of critical-layer modes. Numbers in (a) and (b) indicate the label of
the branches.

(Arendt, Fritts & Andreassen 1997), and hence all perturbations acting within the
vortex core may be described in terms of Kelvin modes. In addition, for any fixed
axial wavenumber k, and azimuthal wavenumber m, the set of frequencies is found to
be discrete and within a fixed interval. In the case of a Rankine vortex with constant
axial flow in the core, it has been shown that the Kelvin modes are slightly modified
owing to the presence of the jet (Loiseleux, Chomaz & Huerre 1998). Except for small
values of k, the jet acts mostly as a Doppler frequency shift.

The effect of a continuous profile on the characteristics of the modes is more
complex (Sipp & Jacquin 2003; Le Dizès & Lacaze 2005; Fabre et al. 2006). For a
Lamb–Oseen vortex (Batchelor vortex without axial flow), Sipp & Jacquin (2003)
showed that linear inviscid normal modes become singular when their angular
frequency is in the range of the angular velocity of the vortex. In such cases, the
linear mode possesses a critical-layer singularity. This singularity can be smoothed
by introducing viscous effects (Le Dizès 2004), but the mode is no longer neutral: it
has a damping rate which becomes large when the critical-layer singularity is close
to the vortex centre. An important point is that the damping rate does not depend
on the Reynolds number for large Reynolds numbers. Moreover, the eigenfrequency
can be computed by integrating the non-viscous equation in the complex plane above
the singularity if m > 0 (below the singularity if m < 0) (see Sipp & Jacquin 2003,
for details). Fabre et al. (2006) have shown good agreement between this procedure
and results obtained from a fully viscous calculation. Figure 1 shows the dispersion
relation of the modes m = 1 obtained for the Lamb–Oseen vortex by the contour
deformation procedure. The branches are identified by a label l (l starts from 1
for the first retrograde mode). This label can be associated with the number of
zeros of the eigenmode radial velocity profile in the radial direction (Sipp & Jacquin
2003). The frequency range where the eigenmodes possess a critical-layer singularity
has been indicated in figure 1(a). The damping rate of the critical-layer modes is
plotted in figure 1(b). It can be seen that the damping increases as the (real part
of the) frequency of the mode increases in agreement with the displacement of the
critical-layer singularity toward the vortex centre.

As long as axial flow is small, the picture of the temporal branches is not strongly
modified (see also Le Dizès & Lacaze 2005). In figure 2, we present the frequencies
of the modes m = 1 for the Batchelor vortex with W0 = 0.1. We recover the same
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Figure 2. Same as figure 1, for W0 = 0.1.

structure of the branches as for the Lamb–Oseen vortex, but a few differences can
also be pointed out. The most important of these differences is the modification
of the frequency range of critical-layer modes. In the presence of axial flow, the
frequency range of critical-layer modes depends on the axial wavenumber. Axial
flow has another important effect: it breaks the symmetry of the dispersion relation
between the positive and negative azimuthal wavenumbers. We shall see in the next
section that these two differences allow new linear mode resonances to occur.

3. Elliptic instability characteristics
In this section, the main steps of the theoretical analysis leading to the characteriza-

tion of the elliptic instability in a Batchelor vortex are provided. The effect of axial
flow on the resonant modes is first quantified. Then, its influence on the instability
growth rate is computed and a complete instability diagram is obtained as a function
of the axial flow parameter W0.

3.1. Characteristics of the principal modes

The theory of the elliptic instability is based on an asymptotic analysis with respect
to the strain rate ε, which is assumed small. The basic idea is presented in the work
of Moore & Saffman (1975) and Tsai & Widnall (1976). For small ε, the mechanism
of the elliptic instability can be understood as a phenomenon of resonance: the
vortex which is axisymmetric at leading order possesses neutral (or almost neutral)
normal modes that can be resonantly coupled with the O(ε) correction induced by
the external strain field. Upon remarking that this correction can be interpreted as
a stationary (ω =0) axially homogeneous (k = 0) wave of azimuthal wavenumber
m = ± 2 (see terms proportional to ε in (2.6) and(2.7)), the condition of resonance of
two normal modes 1 and 2 with this correction is easily written as:

ω2 = ω1, k2 = k1, m2 = m1 ± 2. (3.1)

The above condition is satisfied by numerous couples of normal modes. However,
previous works on the Lamb–Oseen vortex (Eloy & Le Dizès 1999) and on the
Rankine vortex (Eloy & Le Dizès 2001; Lacaze et al. 2005) have demonstrated
that resonant configurations (satisfying (3.1)) corresponding to branches with the
same label are, in general, the most unstable. We then focus on these resonant
configurations, which are called ‘principal modes’ (Eloy & Le Dizès 2001).

Contrarily to the Rankine vortex (Lacaze et al. 2005), some inviscid normal modes
are now damped by a critical-layer singularity and thus they should not a priori be
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Figure 3. Characteristics of the first principal modes (m1,m2) = (−1, 1) as a function of W0.
(a) Axial wavenumber k. (b) Frequency Re(ω). (c) Critical-layer damping rate Im(ω) of the
resonant mode m= 1. Solid line, dashed line and dash-dot line correspond to the three first
labels l = 1, 2, 3, respectively. Curves in (a) and (b) are ended when Im(ω) < −0.04 (see text).
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Figure 4. Characteristics of the first principal modes (m1,m2) = (−2, 0) as a function of W0.
(a) Axial wavenumber k. (b) Frequency Re(ω). (c): Critical layer damping rate Im(ω) of the
resonant mode m= −2. Solid line, dashed line and dash-dot line correspond to the three first
labels l = 1, 2, 3, respectively. As in figure 3, curves in (a) and (b) are ended when Im(ω) < −0.04.
The condition of perfect resonance (3.2) is indicated by a black circle.

involved in any resonance. However, if the damping is small, the growth induced by
the coupling could still be larger. For this reason, we have chosen to monitor also the
critical-layer modes and allow the resonance of these modes as long as their damping
rate is O(ε).

Figures 3(a) and 3(b) show the wavenumber and the frequency of the first principal
modes of azimuthal wavenumbers (m1, m2) = (−1, 1). For W0 = 0, we can check that
the results of Eloy & Le Dizès (1999) for the Lamb–Oseen vortex are recovered. In
that case, all the principal modes (−1, 1) are stationary (ω = 0). When W0 is non-zero,
the frequency of the principal modes (−1, 1) is not zero anymore. This is due to the
symmetry breaking mentioned above between the modes m = 1 and m = −1. We have
chosen to end the curves when one of the two resonant modes has a damping rate
Im(ω) < −0.04. This value is arbitrary, but for the strain field we consider, we expect
resonance not to lead to instability if one of the modes has a stronger damping rate.
In figure 3(c), we show the dependence of this damping rate with respect to W0. The
other resonant mode (m = −1) remains always neutral.

Figures 4(a) and 4(b) show the characteristics of the principal modes (−2, 0). It
is worth mentioning that no resonance exist between such azimuthal modes without
axial flow. This is due to the strong critical-layer damping of the mode m = −2 for
W0 = 0. The variation of the critical-layer damping rate is displayed in figure 4(c).
We clearly see in this plot that an axial flow can sufficiently modify the spectrum,
especially the frequency range where critical layers are present such that new resonant
modes become possible. We remark again that in the case without axial flow, only
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the resonance (m1, m2) = (−1, 1) could arise. As the axial parameter is increased,
the resonance (−1, 1) progressively disappears and is replaced by other resonances:
(−2, 0), then (−3, −1), (−4, −2), as will be shown below. Each principal mode exists
in finite intervals of W0 in which the two resonant modes do not possess critical layers
or in which one of the modes is neutral and the other one is only slightly damped
by a critical layer. Only very few principal modes are possible. Note in particular
that there are no principal modes (m, m + 2) with m � 0 for positive axial flow. In
the frequency range where branch crossing could have been possible, one of the two
modes is indeed always strongly damped by a critical-layer singularity.

In figures 3(a) and 4(a), a small black disk on each curve indicates the wavenumber
of the principal mode for which

ω − kW0 =
m1 + m2

2
. (3.2)

This condition corresponds to the condition of perfect resonance mentioned in Eloy &
Le Dizès (2001) and Lacaze et al. (2005). As shown in Waleffe (1990) and Le Dizès
(2000b), when this condition is satisfied, the resonant modes can be expressed near the
vortex centre as the most unstable local plane waves for which a local estimate of the
growth rate is (9/16)ε0 (ε0 being the strain rate in the vortex centre). Eloy & Le Dizès
(2001) and Lacaze et al. (2005) have also shown that the instability is maximized
when this condition is satisfied and that the local growth rate is a fairly good estimate
for the elliptic instability growth rate in the inviscid limit. We shall see below that
this condition is also useful when selecting the most unstable configurations in the
present case.

3.2. Growth rate of the instability

The growth rate of the resonant Kelvin modes can be computed by a multi-scale
analysis, as shown in Moore & Saffman (1975). The velocity–pressure perturbation
U ′ =(u′, p′) is represented as a sum of two resonant modes of amplitude A1 and A2

U = A1(εt)UK1
(r) exp(ik1z + im1θ − iω1t) + A2(εt)UK2

(r) exp(ik2z + im2θ − iω2t),

(3.3)

where the wavenumbers and frequency of the two modes satisfy (3.1). From the
equations at order ε, two equations for A1 and A2 are obtained as orthogonality
conditions. These equations possess solutions of the form

A1(εt) = B1e
σεt ; A2(εt) = B2e

σεt , (3.4)

which defines the normalized complex growth rate σ . Its real part Re(σ ) is what is
usually called the growth rate, whereas its imaginary part Im(σ ) corresponds to a
frequency detuning. The complex growth rate σ is found to satisfy a relation which
is written as (see Eloy & Le Dizès 1999, 2001 for details)(

σJ11 + ikεQ11 − 1

εRe
L11 − Im(ω)

ε
J11

)
×

(
σJ22 + ikεQ22 − 1

εRe
L22

)
= N̄12N21,

(3.5)

where

Xαβ =
〈
UA

Kα
, XUKβ

〉
,

and UA
Kα

is the velocity–pressure amplitude of the adjoint Kelvin mode, solution of the

adjoint operator obtained with the scalar product (X̄ denotes the complex conjugate
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Figure 6. Same as figure 5 but the for the principal modes (−2, 0, l).

of X):

〈X, Y〉 =

∫ ∞

0

(X̄ · Y )r dr.

The term Jαα in (3.5) represents the energy of the mode α, Nαβ measures the coupl-
ing between the two modes and the strain field. The term Qαα permits us to
take into account a small wavenumber detuning with respect to exact resonance
(k1 = k2 = k0 + εkε +O(ε2) where k0 corresponds to the value plotted in figures 3(a) or
4(a)). The term Im(ω)J11/ε is the damping term due to the critical layer (for which
we implicitly assume Im(ω) = O(ε)). The viscous damping of each mode, given by the
term (1/εRe)Lαα , has also been included in (3.5) in order to cut off small wavelengths.
Including viscous effects on the perturbation is not in contradiction with our
assumption of inviscid base flow. The viscous damping of large-wavenumber Kelvin
modes is indeed proportional to k2/Re, and thus on a faster scale than the viscous
time scale of the base flow if k is large. For example, if k =O(ε−1/4) and Re = O(ε−3/2),
the viscous time scale of the perturbation is O(ε−1) as the elliptic instability time
scale, whereas the viscous diffusion time scale of the base flow is O(ε−3/2).

If no damping term is taken into account, we obtain a simple inviscid estimate

σinv =

(
N̄12N21

J11J22

)1/2

. (3.6)

This expression is plotted for the first three principal modes (−1, 1, l) and (−2, 0, l)
in, figures 5 and 6, respectively. As in figures 3 and 4, the curves have been ended
when the critical-layer damping of one of the two modes has become too important.
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In these plots a small black disk indicates the growth rate for the parameter satisfying
the condition (3.2) of perfect resonance, as indicated in figures 3(a) and 4(a). For the
principal modes (−1, 1), the condition of perfect resonance is obtained for W0 = 0.
It corresponds exactly to the axial flow value which maximizes the instability. The
maximum growth rate is also predicted well by the local maximum growth rate
estimate (9/16)ε0/ε ≈ 1.42.

For the principal modes (−2, 0, l), the perfect resonance growth rate is also close to
the maximum growth rate and to the local maximum growth rate estimate. As for the
case of the Rankine vortex (Lacaze et al. 2005), the condition of perfect resonance
thus provides a good prediction of the parameters which maximize the instability. The
inviscid complex growth rate plotted in figures 5 and 6 does not take into account
the ‘inviscid’ damping associated with the critical layer. When this damping term
is considered, the inviscid growth rate becomes dependent on the value of ε. This
dependency is illustrated for the principal mode (−2, 0, 2) for two values of ε in
figure 7. One can check that the smaller the value of ε, the stronger the effect of the
critical-layer damping.

When the axial wavenumber detuning is considered, the growth rate of each
principal mode becomes peaked in the (W0, k)-plane near the parameter of perfect
resonance. Typically, one obtains growth rate contours of the form illustrated in
figure 8. The curve k = k0(W0), as plotted in figure 4(a) for the principal modes
(−2, 0, l), is displayed as a solid line. The growth rate contours are not symmetric
with respect to this curve. This is due to the critical-layer damping which is more
important on one side of this curve. The-leading-order variation of the (normalized)
critical-layer damping with respect to kε is given for mode 1 by

σCL(kε) = Im

(
Q11

J11

)
kε +

Im(ω)

ε
. (3.7)

The dashed line in figure 8 indicates the axial wavenumber k = k0 + εkε for which
the critical-layer damping approximated by (3.7) vanishes. Above this curve, (3.7)
provides non-physical positive values for σCL which have been replaced by zero in
the general equation (3.5) for the growth rate. In figure 8, the vertical line, which
sharply cuts the growth rate contour, delimits the region of existence of the principal
mode. On this line, the branches ω(k) of the two Kelvin modes forming the principal



Elliptic instability in a strained Batchelor vortex 351

0.4 0.5 0.6
4

5

6

W0

k

Figure 8. Illustration of the growth rate contours in the (W0, k)-plane of a principal mode
for fixed Reynolds number and ε. Here the principal mode (−4, −2, 1) for Re= 20 000 and
ε = 0.015. The curve of exact resonance k = k0(W0) is indicated by a solid line. The dashed line
limits the region where the critical-layer damping is present in (3.5). The dash-dotted vertical
line limits the region of existence of the principal mode.
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Figure 9. Instability area of the principal coupling modes in a plane (W0, k) for Re= 20 000
and ε = 0.01. Grey levels correspond to the intensity of the growth rate.

mode are tangent with each other at the resonant point k0. On the left of this line,
the two branches ω(k) do not cross anymore and the principal mode does not
exist. The growth rate expression, (3.5), is not expected to apply near this line as
higher-order terms should be included to capture this topological change.

Contour plots such as that shown in figure 8 can be computed for each principal
mode. When these plots are superimposed in the (W0, k)-plane, we obtain a multitude
of instability ‘islands’ associated with each principal mode. In figures 9, 10 and 11,
such instability diagrams are given for three couples of parameters (Re, ε). Each
‘island’ corresponds to a principal mode. We immediately see that numerous instability
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Figure 10. Same as figure 9 but for ε = 0.015.
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Figure 11. Same as figure 9 but for Re= 5000 and ε =0.01.

modes are possible, each in a different region of the parameter space. In particular, the
principal modes (−1, 1, l) are seen no longer to be the only possible unstable modes
in the presence of axial flow. The other principal modes (−2, 0, l), (−3, −1, l), etc,
characterized by a more complex spatial structure become possible unstable modes
as W0 is progressively increased. The variations of the growth rate for two fixed
values of the axial flow (W0 = 0.25; W0 = 0.48) will be compared to results obtained
by numerical simulations in the next section.
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Figure 12. Most unstable principal mode in the (W0, εRe)-plane for (a) ε = 0.01
and (b) ε =0.1.

By comparing the figures 9, 10 and 11 with each other, we immediately see that
the different instability regions spread as either ε or Re is increased, as expected. The
variation with respect to the Reynolds number is also visible in figure 12. In these
figures, the characteristics of the most unstable principal modes are displayed in the
parameter plane (W0, εRe) for two values of ε.

4. Numerical results and comparison
In this section, the theoretical results are compared to numerical results obtained

for a pair of counter-rotating vortices with an axial jet. A similar comparison has
been performed for vortex pairs without axial flow in Le Dizès & Laporte (2002).

4.1. Numerical procedure

The numerical computation is performed in two steps. The basic flow is first obtained,
then the most unstable linear mode is computed.

The basic flow is obtained by a two-dimensional numerical simulation. The simula-
tion is initialized with two counter-rotating Gaussian vortices without axial flow of
core radius R0, circulation Γ , and separated by a distance b. This initial condition does
not form a solution to the Euler equations. Thus, there is first a rapid relaxation phase
during which the vortices equilibrate with each other (Sipp et al. 2000). Then, the
quasi-steady state is obtained after the relaxation process is advected at a constant
speed and slowly evolves owing to viscous diffusion. In the simulation, the self-
advection speed of the vortex pair is subtracted such that the vortices remain in the
computational domain. The properties of the quasi-steady state have been analysed in
Sipp et al. (2000) and Le Dizès & Verga (2002). For the ratios of R0/b that we use, it
has been shown that each vortex can be considered as a Gaussian vortex in equilibrium
with the external strain field generated by the other vortex. Moreover, the strain rate
of the external field has been shown to be close to the value ε =Γ/(2πb2) obtained
by a point-vortex approximation. The two-dimensional simulation is stopped after
the relaxation process. The vortex radius R has slightly increased owing to viscous
diffusion and it is this new value which is considered for length-scale normalization.
The normalized strain rate parameter ε is therefore defined by

ε =
R2

b2
. (4.1)
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The two-dimensional evolution of the axial flow is completely decoupled from the
dynamics of the other velocity components and can be treated separately. It satisfies
the same advection–diffusion equation as the axial vorticity. Thus, if we consider an
axial flow velocity field proportional to the axial vorticity, we automatically form a
solution. However, for such a solution, the axial flow is in the opposite direction
when comparing either vortex with the other. Because, in most applications, vortices
possess axial flow in the same direction, we have also integrated the advection–
diffusion equation with an initial condition defined by W (t = 0) = |ωz(t = 0)|. For the
values of R0/b we have considered, the solution was also found to follow closely
the evolution of |ωz| in both vortices in that case. After the relaxation process, the
strength of the axial flow was adjusted such that W = (W0/2)|ωz| in each vortex core,
in agreement with (2.4) and (2.5).

To compute the most unstable linear mode, the Navier–Stokes equations are
linearized with respect to the frozen basic state. Perturbations are chosen with a
fixed axial wavelength λ= 2π/k. The perturbation equations are integrated forward
in time starting from a random perturbation field. When the basic flow is unstable, the
perturbation quickly becomes a combination of growing modes. The most unstable
mode characteristics are extracted by integrating the perturbation equations for a
sufficiently long time (typically 30 to 100 times the inverse growth rate).

For each set of parameters (Re, W0, R/b and k), we obtain the frequency, the growth
rate and the spatial structure of the most unstable mode which can be compared to
the theory.

4.2. Numerical code

The two-dimensional equations and the three-dimensional linearized equations are
solved using a high-order spectral-element method. The numerical code has previously
been applied successfully to several problems (see for instance Ryan, Thompson &
Hourigan 2005; Thompson et al. 2001a, b).

The time integration uses a three-step time-splitting method and achieves second-
order time accuracy, and is described in Karniadakis, Israeli & Orszag (1991). The
spatial accuracy was determined at run time by choosing the order of the tensor-
product of interpolating polynomials within each macro-element as is usually possible
with finite-element schemes. In all the simulations quoted herein, 700 macro-elements
were employed with eighth-order polynomial interpolants. A square domain was
considered with a domain length and width of 40 vortex diameters.

The accuracy of the code was validated by comparing the damping rate of the strain
rate oscillation during the two-dimensional relaxation process with the analytical
prediction (Le Dizès & Verga 2002). A maximum deviation of 0.025 % was noted
when eighth-order polynomial interpolants were used.

4.3. Results and comparison

In all the numerical investigations, the Reynolds number and the normalized vortex
separation distance were held fixed, Re = 3180; R/b = 0.25. This corresponded to
an external strain rate ε =0.0625. This relatively high strain rate was chosen to
increase the growth rate of the three-dimensional instabilities (and hence decrease
computational expense) while maintaining a sufficiently low strain rate that valid
comparisons could be made with the analytical theory.

Several values of W0 were investigated. For each value of W0, 120 wavenumbers
equally spaced in the range k = 1 to 6 were examined, and the findings were compared
with analytical theory. Only two values of W0 are detailed in this paper; however,
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Figure 13. Growth rate of the elliptic instability as a function of the axial wavenumber
for W0 = 0.2494, Re= 3180 and ε = 0.063. Symbols are numerical results for counter-rotating
vortices with axial flow in the same direction. Solid curves and dashed curves are theoretical
predictions for principal and non-principal modes, respectively (see text for explanation on the
labels).

it should be stressed that the excellent agreement between analytical and numerical
findings described herein is typical for all investigations performed in this study.

Figure 13 shows a comparison between the analytical and numerical investigations
for W0 = 0.2494. Here, two main principal modes are noted in both investigations.
The first, with a peak growth rate at k � 1.4, corresponds to the principal mode
(−2, 0, 1). The second mode has a peak growth rate at k � 3.4, and corresponds
to the principal mode (−2, 0, 2). The theory also predicts that the principal mode
(−1, 1, 1) is unstable near k � 1.9. The growth rate of this mode is, however, smaller
than the growth rate of the principal mode (−2, 0, 1) for almost all wavenumbers.
This mode is visible on the numerical results only very close to k � 1.92. The principal
mode (−1, 1, 1) was the most unstable mode in the configuration without axial flow.
Although this mode is still unstable for W0 = 0.2494, it is now superseded by several
other modes. It is therefore not expected to be observed experimentally.

Two further modes are noted in the numerical computation close to k � 2.3 and
k � 4.1. These modes are not associated with any theoretical principal mode. However,
both possess a spatial structure involving azimuthal wavenumbers m = −2 and m =0.
Going back to the theory, we noted that these modes could be associated with the
resonance of Kelvin modes from branches of different labels. Using the same technique
as above, we computed the growth rate associated with the two non-principal modes
(−2, 0, [1, 2]) and (−2, 0, [2, 3]). In the notation (−2, 0, [2, 3]), the first two indexes
denote the azimuthal wavenumbers of the resonant Kelvin modes, and the last two
denote the branch labels of each mode. The theoretical growth rate of these modes is
indicated in dashed lines in figure 13. Although slightly below the numerical growth
rate, the agreement is remarkable.

Figure 14 shows a comparison between the analytical and numerical investigations
for W0 = 0.482. Considering figure 14, we observe that this is a region of the parameter
space which has several modes which are unstable, the dominant mode in this region
being mode (−2, 0, 1). Three principal modes are observed both numerically and
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Figure 14. Same as figure 13 but for W0 = 0.482.

analytically in the figure, further to this, several modes of lower maximum growth
rate are also observed. In each case, the analytical work and the numerical simulations
are in close agreement. The three principal modes observed correspond to the Kelvin
mode couplings (−2, 0, 1), (−3, −1, 1) and (−4, −2, 1). Two non-principal modes are
also observed both numerically and analytically. Their presence was noted only after
the numerical simulations; subsequently, analytical work successfully determined the
growth rates for these mode couplings. Further modes are noted from the numerical
simulations at high wavenumbers; however, the maximum growth rate observed for
these is very small when compared to the other modes identified.

It is worth mentioning that although unstable non-principal modes have been
observed for both axial flow parameters, they have always been found to be less
unstable than principal modes. It is therefore very unlikely that they would be
observed experimentally. This provides an a posteriori justification for not having
considered all these modes in the theory.

Figure 15 shows contours of the perturbation vorticity fields for each of the modes
identified for W0 = 0.482. The images are taken in a two-dimensional horizontal cross-
section which is at an arbitrary axial position. In each case, the perturbation field for
both vortex cores are shown. The figures are taken at a given instant in time, after
the perturbation field was allowed to grow sufficiently, such that the mode structures
are clearly visible. The images are typical of the perturbation vortex structures at any
time once the perturbation fields are developed. It may be observed that, in each case,
one of the vortices has a stronger perturbation field than the other. This is due to
the perturbation field growing from random noise. Although both vortices exhibit the
same growth rate, the perturbation field in one emanates from a random field which is
more predisposed to the mode growth than the other. It is through these images that
the azimuthal structure of modes may be identified from the numerical simulations.
For the three principal modes identified (−2, 0, 1), (−3, −1, 1) and (−4, −2, 1), not
only does the growth rate agree closely with the analytical findings, the perturbation
flow field agrees entirely with the predictions, given the mode type associated with
each peak. The azimuthal wavenumbers m = −2 and m = −3 are also clearly visible
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Figure 15. Numerical results for the perturbation vorticity fields for each identified mode
shown in figure 14. W0 = 0.482, Re= 3 180 and ε = 0.063. (a) Mode (−2, 0, 1), k =1.88;
(b) mode (−3, −1, 1), k = 3.23; (c) mode (−4, −2, 1), k = 4.57; (d) mode (−2, 0, [2, 1]), k = 2.6;
(e) mode (−3, −1, [2, 1]), k = 3.85.

on the vorticity fields of the modes (−2, 0, [2, 1]) and (−3, −1, [2, 1]) shown in figures
15(d) and 15(e), respectively.

The addition of the axial velocity allows a temporal frequency ω to be observed
which may be compared to the analytical prediction (see § 3). An illustration of
the temporal dynamics is shown in figure 16 for mode (−2, 0, 1). In this case, the
perturbation vortex cores are observed to twist about the axis of the base vortex core.
As we are observing the perturbation vortex structure only on one plane along the
axis, the perturbation vortex structures appear to rotate over time. It is apparent that
there are two positive and two negative perturbation vortex structures for each base
vortex. This is clear evidence of an m = −2 component in the perturbation. These
structures appear to change subtly in size throughout the cycle. This is evidence of the
m = 0 component. The frequencies of all the unstable modes considered for W0 = 0.482
are presented in table 1. They are also compared to the analytical estimates which
provides further confirmation that the modes observed numerically are identical to
those predicted by the theory.

The small discrepancies observed between the numerical and analytical results
can be attributed to a few factors which it is useful to recall. First, the theoretical



358 L. Lacaze, K. Ryan and S. Le Dizès

(a)

(c) (d)

(b)

Figure 16. Snapshots of perturbation vorticity over a cycle ω. Each image is one eighth of a
cycle from the previous one. The positive and negative vortices are observed to rotate about
the axis of each base vortex. In this case, the mode is (−2, 0, 1), W0 = 0.482, Re= 3 180, and
ε = 0.063.

Mode k σT h σNum ωT h ωNum

(−2, 0, 1) 1.88 1.32 1.23 −0.25 −0.26
(−3, −1, 1) 3.23 1.11 1.05 −0.61 −0.58
(−4, −2, 1) 4.57 0.83 0.8 −0.95 −1.04
(−2, 0, [2, 1]) 2.6 0.68 0.71 −0.21 −0.22
(−3, −1, [2, 1]) 3.85 0.57 0.69 −0.57 −0.60

Table 1. A comparison of results for the modes identified for W0 = 0.482, Re = 3180 and
ε = 0.063. The wavenumber is normalized by 1/R, the growth rates σT h and σNum by Γ/(2πb2)
and the frequencies ωT h and ωNum by Γ/(2πR2).

results were obtained by computing a leading-order viscous correction to inviscid
predictions. Higher-order corrections may be significant for the low Reynolds number
we considered in the numerics. Secondly, the two vortices were placed close to each
other (R/b =0.25). The strain rate induced by one vortex on the other was therefore
important. Higher-order corrections in the strain rate could therefore affect both the
theoretical description of the base flow and the calculation of the instability growth
rate. Moreover, in most simulations, we have considered counter-rotating vortices
with axial flow in the same direction. For this configuration, vorticity and axial
flow are proportional to each other in the vortex cores, as in the theory, but in the
region between the vortices, this is not the case: axial flow contributions add up,
whereas vorticity contributions annihilate. This could affect the less localized modes
in the vortex cores. Finally, before their destabilization, the two vortices are not only
elliptically deformed, but also exhibit azimuthal deformations of higher order (see for
instance Ehrenstein & Le Dizès 2005). Such deformations have not been taken into
account in the theory. They may generate other instabilities (see Eloy et al. 2003), but
they may also affect some of the present resonances.

It is worth mentioning that the discrepancies are not all in the same direction
(see figure 13). This indicates that the above factors can be either stabilizing or
destabilizing, and their contributions vary from one mode to the other.



Elliptic instability in a strained Batchelor vortex 359

5. Conclusion
In this paper, we have analysed the stability of a strained Batchelor vortex with re-

spect to the elliptic instability. Only small axial flow parameters have been considered,
for which the Batchelor vortex is stable with respect to inviscid perturbations. We have
shown that axial flow modifies the characteristics of the elliptic instability. Without
axial flow, the elliptic instability mode is formed of two stationary symmetric Kelvin
modes m =1 and m = −1. Axial flow breaks the symmetry between the Kelvin modes
m = 1 and m = −1 such that the elliptic instability is no longer a sinuous stationary
deformation in the presence of a small axial flow. For larger axial flow, the resonance
between Kelvin modes m =1 and m = −1 disappears because one of the two modes
becomes strongly damped owing to a critical-layer singularity. However, another
resonance between m =0 and m = −2 becomes possible, leading to a new instability
mode. As the axial flow is progressively increased, this resonance is replaced by
another between modes m = −1 and m = −3 and so on. Complete instability diagrams
associated with the principal modes have been obtained as functions of the axial flow
parameter and the axial wavenumber for several values of the strain rate and the
Reynolds number.

The theoretical results have been validated by a linear simulation of the instabilities
developing in a pair of counter-rotating Batchelor vortices. In this system of vortices,
each vortex is subject to the strain field induced by the other vortex. For each axial
flow parameter, the normalized axial wavenumber of the perturbation has been varied
between kR = 1 to 6. The characteristic features (spatial shape, growth rate, frequency)
of the most unstable modes predicted by the theory have been recovered with good
agreement. Other less unstable modes have also been observed in the simulation. They
have been successfully attributed to resonance of non-principal modes associated with
branches of different labels. Their theoretical growth rate has also been calculated
and shown to compare favourably with the numerics.

Counter-rotating vortices are often used to describe the vortex system in the far
wake behind an aircraft. Axial flow is still present in these vortices and can reach in
certain cases more than 10 % the maximal azimuthal velocity. A principal instability
mode (−2, 0) could therefore be present. A pair of counter-rotating vortices is also
known to be subject to the Crow instability. This long-wavelength instability is
not expected to be affected by weak axial flow. However, it would be interesting
to determine whether its nonlinear development could be modified by the elliptic
instability mode (−2, 0).

In the near wake behind an aircraft, axial flow is expected to be more important,
but the strain field acting on a given vortex is usually rotating. In that case, the theory
is slightly different as the rotation of the strain field has to be taken into account in
the conditions of resonance (see Le Dizès & Laporte 2002). However, this rotation
is always small so the main results of the present analysis are not expected to be
modified: the sinuous instability mode (−1, 1) is expected to be superseded by other
resonant modes (−2, 0), (−3, −1), etc. as axial flow increases. How these new modes
modify the merging process of co-rotating vortices is one of the questions which it is
now important to address.
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